Supplemental Materials for Exemplar Scoring Identifies Genetically Separable
Phenotypes of Lithium Responsive Bipolar Disorder

Abraham Nunes MD PhD MBA, William Stone BSc MSc, Raffaella Ardau MD, Anne Berghofer MD, Alberto Bocchetta MD,
Caterina Chillotti MD, Valeria Deiana MD, Franziska Degenhardt MD, Andreas J. Forstner MD, Julie S. Menzies BN, Eva Grof MD,
Tomas Hajek MD PhD, Mirko Manchia MD PhD, Manuel Mattheisen MD, Francis McMahon MD, Bruno Miiller-Oerlinghausen
MD, Markus M. Néthen MD, Marco Pinna PsyD, Claudia Pisanu MD, Claire O’Donovan MD, Marcella DC Rietschel MD, Guy
Rouleau MD PhD, Thomas Schulze MD, Giovanni Severino MD, Claire M Slaney RN, Alessio Squassina PhD, Aleksandra Suwalska
MD, Gustavo Turecki MD PhD, Rudolf Uher MD PhD, Petr Zvolsky MD, Pablo Cervantes MD, Maria del Zompo MD, Paul Grof
MD PhD, Janusz Rybakowski MD PhD, Leonardo Tondo MD MSc, Thomas Trappenberg PhD, and Martin Alda MD

Contents
1 Supplementary Methods 2
1.1 The Clinical Exemplar Score . . . . . . . . . .. .. . . 2
1.2 The Predict Every Subject Out (PESO) Protocol . . . . . . . ... .. ... .. ... ... ...... 3
1.3 Gene Set AnalysiS . . . . . . . . oL e e 3
1.4  Summary of Genomic Preprocessing Methods . . . . . . . ... .. ... ... ... ... ... .. 5
2 Supplementary Results 5
2.1 Clinical Data Cohort Descriptions . . . . . . . . . . . . v it i it e e 5
2.2 Evaluation of Population Structure . . . . . . . . . . ... 6
2.3 Classification Performance in the Predict Every Subject Out Analysis . . . . . .. ... ... .... 9
2.4 Demographic Comparisons of Best and Poor Exemplars among Genotyped Subjects . . . . . . . . .. 10
2.5 Results of Genomic Classification of Lithium Response . . . . . . .. ... .. ... .. ....... 14
2.6 Sensitivity Analyses on Genomic Classification . . . . . . ... ... ... ... ... ... 14
2.6.1  Preliminaries . . . . . . . . . ... e e e e 14
2.6.2 Sensitivity to Test-Set Size . . . . . . . . . e 15
2.7 Results of Gene Enrichment Analysis . . . . . . . .. ... ... e 17
3 Supplementary Discussion 25
3.1 Further Rationale for SNP Set Used in Classification Analyses . . . . . . . ... ... ... ..... 25



1 Supplementary Methods
1.1 The Clinical Exemplar Score

Let (x;5,v:;) € X denote phenotypic data from subject i € {1,2,...,n;}, where x;; is a vector of clinical features,
yij € {0, 1} denotes whether the patient is a lithium responder, and n; is the number of patients in the sample from
site j € {1,2,...,5}. A pair (x, y) can thus be viewed as a set of coordinates on the (observable) phenotypic space
X. Data are sampled from S sites, each of which can be considered to sample a subdomain of the phenotypic space
XU) C X. These site-wise subdomains are not necessarily disjoint. Indeed, if they were disjoint, the sites’ data would
share nothing in common.

Now let M, denote a classifier learned on training data from site j. Given a new set of clinical features, x’, the
classifier predicts the probability that the corresponding patient is a lithium responder: that is, p; = M; (x’). We
denote the accuracy score of this prediction as

fi sy =11y = M; (X)]. M

The representational Rényi heterogeneity measurement approach (1) consists of measuring heterogeneity on a
latent or transformed space onto which observable data are mapped. To apply this in the present case, where we
have defined our observable space, X', we must now devise an appropriate transformed space upon which the Rényi
heterogeneity will be both meaningful and tractable. The heterogeneity deemed relevant in the present case arises in
terms of differences in classification models across sites. Most starkly, we noted that the informative features for lithium
response prediction varied between the best performing sites. In other words, depending on which site’s data are used
for training, one might learn quite different (and perhaps even contradictory) relationships between clinical features
and lithium responsiveness. In the limit where data from each site encodes completely different relationships between
clinical features and lithium response, then each classifier M; will behave distinctly (they will tend to disagree). In
terms of numbers equivalent, we would say that in such a case there is an effective number of S distinct classifiers.
Conversely, if the phenotypic domains of all sites overlap completely, then all classifiers M ; will tend to make similar
predictions, which would correspond to an effective number of one classifier.

Let the accuracy of classifier M in predicting the relationship x — y be a measure of that model’s informativeness
at point (x,y). We can thus define 7 as a categorical space representing an index on “the most informative classifier."
We illustrate the mapping f : X — 7 in Figure 1. A probability distribution over 7 can be computed using a
normalization of Equation 1:

S
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The quantity f; (x, y) can be taken to represent the probability that a classifier trained on data from site j is the most
informative about the x — y mapping in that particular region of X'. With this, we can compute the representational
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Supplementary Figure 1: Representation of the mapping from phenotypic space X" onto the representation of “most
informative site-level model” (7). The transformation function is the normalized accuracy score for a classification
model trained on each site’s data individually (Equation 2).



Rényi heterogeneity at (x, y) as follows:

1
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If the models M —_; 5 . s differ only in their training data (i.e. they have the same architecture, optimization
routine, and hyperparameters) then the units of Equation 3 are “the effective number of informative sites.”

Recall that we defined a “clinical exemplar” as a subject whose phenotype (x, y) is reliably predicted accurately
across all sites. In other words, regardless of the differences between sites’ data, all sites would agree in their predictions
of the exemplars’ phenotypes. More formally, clinical exemplars must have high values of II, (x,y) (all sites are
similarly informative). However, to identify more specifically the exemplars of lithium response and non-response, we
cannot solely rely on I, (x, y), since that value may be high, despite sites’ prediction accuracies being low.

Let t, = max; fj (x,y) denote the maximal accuracy score obtained in classification at (x, y). We take this value
to represent the degree to which a subject with that phenotype can be clearly associated with one class or another. An
interesting case occurs where both ¢, and I, (x, y) are high, suggesting the point (x, y) is an exemplar of the regions of
X that are reliably well classified across sites. Conversely, if ¢, =~ 0.5 and II, (x, y) is high, then that point is exemplary
of a region of X’ of which all sites are uncertain. When ¢, is low and II, (x, y) is high, then (x, y) is exemplary of a
region of A that reliably misleads all sites’ classifiers.

In the present study, we are concerned with identifying only those subjects with high values of both ¢, and
I1, (x,y), since they exemplify the most canonical “phenotypes” of lithium response and non-response, respectively.
We accomplish this by combining ¢, and II, (x, y) into a single index we call the exemplar score. The exemplar score
at coordinate (x,y) of the phenotypic space is defined as

. ww;ﬂw “

where f[q (x,y) is a standardization of the Rényi heterogeneity to the [0,1] interval (the same scale as ¢*):
- I (Xa y) -1
I, (x,y) = qul

In the present study, we define the “best exemplars” as subjects whose exemplar scores (within their lithium response
classes) were in the top 25%. Poor exemplars were those subjects whose phenotypes were in the lower quartile of
exemplar scores within their response classes.

(&)

1.2 The Predict Every Subject Out (PESO) Protocol

The predict every subject out protocol (PESO; Figure 2) is a method by which we can compute exemplar scores for
each subject in the dataset while (A) ensuring that subject is not included in the training data and (B) having each model
train on only that site’s data. All classifiers in our data were random forests, (RFC) (2) under the same specifications
as in Nunes et al. (3) (100 estimators; SciKit Learn implementation; (4)). Similar to that study, missing data were
marginalized by sampling from uninformative priors on respective variables’ domains (3).

For each site in the clinical predictors dataset, the PESO analysis protocol begins with a Leave-One-Out cross-
validation run to obtain out-of-sample predictions for each of that site’s constituent subjects. We then train an RFC on
that site’s data and predict lithium response in all other sites’ subjects. Each subject is thus mapped onto our categorical
space T, upon which we can measure their exemplar scores.

1.3 Gene Set Analysis

At each fold of cross-validation, the logistic regression coefficients were saved. The SNPs whose logistic regression
coefficients were of the same sign (i.e. positive or negative, such that we focus only on SNPs with consistent associations)
across all folds were ranked in terms of their absolute median coefficient values and linked to gene identifiers using the
NCBI gene database. Each gene was assigned the maximal absolute value of the logistic regression coefficients for all
SNPs tagged by that gene; the remainder (duplicates) were deleted, such that each included gene had only one numerical
value associated with it. We then applied the statistical enrichment test in the PANTHER classification system v. 14.1
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Supplementary Figure 2: Illustration of the algorithm for the predict every subject out protocol.




Supplementary Table 1: Description of constituent datasets. Abbreviations: number of patients (N), lithium responders
(LR+), Cagliari (Centro Bini; CB), Cagliari (University; CU), International Group for the Study of Lithium (IGSLi),
Maritimes (MAR), Ontario (ON), Poznan (POZ).

Sample N (LR+) Description

CB 324 (21%) Patients followed at the Mood Disorder Lucio Bini Center in Cagliari, Italy. Clinical
data collection and response assessment was done by two psychiatrists.

CU 206 (29%) Patients in the long term treatment program at the Lithium Clinic of the Unit of

the Clinical Pharmacology Center, University Hospital of Cagliari, Italy. Clinical
data collection and response assessment was done by three psychiatrists and three
clinical psychopharmacologists.

IGSLi 70 (100%) Patients recruited for a genetic study of lithium responsive bipolar disorder. (7) By
design of that study, all patients were lithium responders. Clinical data collection
and response assessment was done by three psychiatrists.

MAR 343 (20%) Patients followed by the Mood Disorders program at the Nova Scotia Health Au-
thority and the Maritime Bipolar Registry. Clinical data collection and response
assessment was done by two psychiatrists and two research nurses working in pairs.

MTL 95 (16%) Patients followed by the Mood Disorders Program at the McGill University Health
Centre. Clinical data collection and response assessment was done by one psychia-
trist.

ON 117 (84%) Patients from our earlier studies of lithium responsive bipolar disorder, (7, 8) which,

like the IGSLi sample, explains the greater proportion of responders. Clinical data
collection and response assessment was done by three psychiatrists (including MA,
who is now in the Maritimes).

POZ 111 (53%) Patients followed longitudinally by the Psychiatry Department at the University of
Poznan, Poland. Clinical data collection and response assessment was done by two
psychiatrists.

(5). We repeated the statistical enrichment test for the following annotation sets: PANTHER pathways, GO molecular
function (complete), GO biological processes (complete), GO cellular components (complete). To further evaluate the
degree to which the enrichment analyses speak specifically to findings among the best exemplars, we repeated the same
procedures outlined here using the logistic regression coefficients for the poor exemplars.

1.4 Summary of Genomic Preprocessing Methods

Our raw dataset consisted of the genotypes resulting from the preprocessing and imputation steps taken by Hou et al.
(6). We summarize their quality control and imputation steps here. However, note that the sample used for the present
study includes only SNPs that were directly genotyped across all sites. Our subject sample is restricted only to those
from the Dalhousie University sample of ConLiGen, since these were the only such subjects for whom clinical variables
were also available.

Hou et al. (6) provided the following quality control parameters for retaining SNPs and subjects. Subject-wise
SNP-missingness rate less than 0.03. The autosomal heterozygosity rate was within a mean of +/- 3 standard deviations.
Minor allele frequency must have been greater than 0.01. Missingness (SNP-wise) must have been less than a rate of
0.05. The SNP Hardy-Weinberg equilibrium p-values were greater than 10~* in all samples. Hou et al. (6) detected no
discrepancies between reported and genotypic sex.

2 Supplementary Results

2.1 Clinical Data Cohort Descriptions

Descriptions of the dataset of clinical variables is provided in Table 1.



2.2 Evaluation of Population Structure

To evaluate for the presence of population stratification in our genomic sample, we plot the first several principal
components of the subjects’ genotypes in Figure 3. For comparison, Figure 4 demonstrates the first several principal
components from 14 sites of the full Consortium on Lithium Genetics (ConLiGen) genomic sample.



e IGSLi e Li(-)
0.02 - .
o MAR 0.02 1 o Li(+)
e MTL
0.01 + o ON 0.01 ~
(<]
O 0
Y 0.00 . < 0.00 A o
@ (<]
—0.01 - —0.01 -
0,024 —0.02 -
-0.02 0.00 0.02 0.04 -0.02 0.00 0.02 0.04 0.06
PC1 PC1
0.03 : .
e IGSLi e Li(-)
0.02 + e MAR 0.02 - o Li(+)
0.01 - e MTL
° ON 0.00 -
0.00 - ®
m [~ m
g g
—0.011 ~0.02 1
—0.02 - )
@
—0.04 -
—0.03 - ®
~0.04 - ©
-0.02 0.00 0.02 0.04 -0.02 0.00 0.02 0.04 0.06
PC1 PC1
0.03
e Li(-)
0.02 - 0.02 o Li(+)
0.01 -
0.00 -
0.00 -
m m
& &
—0.011 ~0.02 1
e IGSLi
—0.02 e
o MAR o
_003 | O MTL ) —004 n
e ON b
—0.04 -
-0.02 -0.01 0.00 0.01 0.02 —0.02 -0.01 0.00 0.01 0.02

PC2

PC2

Supplementary Figure 3: Principal components analysis of the genomic dataset from Halifax (as coded in the
ConLiGen studies (6)). The left column is coloured by the site of origin, whereas the right column of plots is coloured

by lithium responsiveness. Abbreviations: International Group for the Study of Lithium (IGSLi), Maritimes (MAR),
Montreal (MTL), Ontario (ON; also known as Ottawa/Hamilton).
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2.3 C(lassification Performance in the Predict Every Subject Out Analysis

Figure 5 plots the site-level models’ accuracy distributions. This plot shows that the site-level accuracies were highly
variable in shape and modality. This provides further confirmation that classification behaviour between site-level
models was heterogeneous. Several of the distributions shown in Figure 5 can be easily appreciated as corresponding to
the Brier scores reported in evaluation of model calibraion by Nunes et al. (3). For example, the Brier score for the
Maritimes clinical dataset was 0.15 (95% CI 0.13-0.16), whereas for the Poznan site it was 0.24 (0.23-0.24) in the
original study. Figure 5 indeed shows that the probabilistic predictions made by the Maritimes site are more widely
distributed than those of Poznan, as one would expect with a better calibrated model. One can also appreciate the
limitations inherent to IGSLi’s inclusion of only lithium responders (which in Nunes et al. (3) prevented reporting of a
site-level analysis for this sample). That is, since IGSLi includes only lithium responders, it achieves perfect accuracy
only for the lithium responders, with completely erroneous responses for the non-responders.
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Supplementary Figure 5: Accuracy distributions for models evaluated under the predict every subject out (PESO)
regime. The violin plot at the upper leftmost corner shows the accuracy distributions for each site model evaluated over
all subjects in the dataset, with the densities colored according to the proportion of lithium responders in the training
site’s data. The remaining subplots show accuracy histograms for training site models (specified in the titles) stratified
across out-of-sample sites. For the site-wise histograms, color indicates the responder/non-responder balance in the
respective validation site. Abbreviations: Lithium responder (LR+), Cagliari (Centro Bini; CB), Cagliari (University;
CU), International Group for the Study of Lithium (IGSLi), Maritimes (MAR), Ontario (ON), Poznan (POZ).



2.4 Demographic Comparisons of Best and Poor Exemplars among Genotyped Subjects

Clinical demographic comparisons between the best exemplars, poor exemplars, and the aggregated sample of genotyped
patients is presented in Table 2, with stratification by lithium response. The results of gene enrichment analysis are
presented in Table 4, with specific genes enriched in the best exemplar group (related to glutamate receptors and
signalling processes) shown in Tables 5 and 6.
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2.5 Results of Genomic Classification of Lithium Response

Supplementary Table 3: Results of classifying lithium response based on the genomic data of all subjects (ALL;
n=321), the poor exemplars (<25th percentile of exemplar score; n=81), and the best exemplars (>75th percentile of
exemplar score; n=79). Each panel shows the results for a different classification performance metric. Classification
was done using logistic regression with an L2 penalty (regularization weight set to C=1 a priori) with stratification
done over each value of the resolution parameter q=1 and q=2. Abbreviations: area under the receiver operating
characteristic curve (AUC), Cohen’s kappa (Kappa), Matthews correlation coefficient (MCC), positive predictive value
(PPV), negative predictive value (NPV). Results are presented as means and 95% confidence intervals.

qg=1 q=2

Statistic Best Poor Best Poor ALL

Accuracy 0.75[0.66,0.87] | 0.65[0.53,0.75] | 0.75[0.65,0.75] | 0.50[0.50,0.72] | 0.66 [0.60,0.70]
AUC 0.88 [0.83,0.98] | 0.66[0.61,0.80] | 0.81 [0.66,0.86] | 0.53[0.45,0.72] | 0.70[0.62,0.75]
Sensitivity | 0.75[0.50,0.94] | 0.50[0.31,0.75] | 0.75[0.54,0.75] | 0.50[0.06,0.50] | 0.59 [0.48,0.62]
Specificity 0.88 [0.75,1.] 0.75[0.75,0.79] | 0.75[0.56,0.94] 0.75[0.50,1.] 0.70[0.59,0.83]
PPV 0.90 [0.75,1.] 0.67 [0.53,0.75] | 0.75[0.67,0.95] | 0.50[0.12,0.90] | 0.67 [0.59,0.78]
NPV 0.71 [0.67,0.95] | 0.67 [0.53,0.73] | 0.75[0.67,0.79] | 0.50[0.50,0.67] | 0.65[0.61,0.67]
F1 0.71[0.67,0.86] | 0.62[0.39,0.73] | 0.71[0.67,0.79] | 0.50[0.08,0.67] | 0.64 [0.58,0.67]
Kappa 0.50[0.31,0.74] | 0.28 [0.06,0.50] | 0.50[0.29,0.50] 0. [0.00,0.44] 0.31 [0.20,0.39]
MCC 0.58 [0.41,0.77] | 0.29 [0.06,0.50] | 0.50[0.39,0.58] 0. [0.00,0.50] 0.32[0.20,0.44]

2.6 Sensitivity Analyses on Genomic Classification
2.6.1 Preliminaries

Out-of-sample model criticism requires splitting a dataset into training and testing partitions. This is often done
repeatedly using cross-validation. Performance estimates will have a higher variance when computed based on smaller
test sets. This can easily be shown in closed form as follows. Let N7 be the size of the test set, and N¢ the number of
examples correctly classified. The probability distribution over N¢ is binomial with parameters Ny and 0 < 6 < 1,
where 0 is the underlying accuracy of the model. Since the conjugate prior for a binomial likelihood is Beta(8|«, 3)
with hyperparameters (pseudo-counts) o > 0 and 8 > 0, then the posterior over 6 is Beta(6|a + N¢, 5 + Ny — N¢).
The posterior variance is

(o + N¢) (B — N¢ + Nr)
(@ + B+ Np)?(a+p+Np+1)

Under a uniform prior, Beta(f|a = 1, 8 = 1), the maximum likelihood estimate (MLE) of accuracy for a given test
setis § = N¢ /Ny, and the posterior variance can be rewritten as

(6)

Var(0) =

—(6 —1)N2 + Np 41
(N +2)* (N7 + 3)

It is trivial to show that Equation 7 is a strictly non-increasing function with respect to N7, and that its limit in large
Nr is zero. It is therefore clear that with small N, there is a greater probability of obtaining extreme accuracies (both
high and low, as suggested and shown by (9—11)). However, given publication bias, one would consequently expect to
see the phenomenon highlighted by Schnack & Kahn (12), whereby larger test set sizes are negatively associated with
classification performance. This can be appreciated by visualizing the inverse survival function of the upper tail of
Beta(f|a + N¢, 8 + Ny — N¢) under a uniform prior and an MLE of 6, = 0.5 = N¢ /Ny, allowing us to substitute
(e + N¢) = (84 Nr — N¢) = 1+ Np/2. The inverse survival function of this beta distribution, denoted v, (p, Nr),
is the value of 6 such that Prob(X > 6) = pfor0 < X < I:

Var(6) = 7)

_ N N
olp, Np) = I" ) (1 + 5l 2T> : ®)
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Supplementary Figure 6: The effect of test set size (Nr) on the top 100p™ percentile of accuracy expected from a
null classifier whose underlying accuracy is actually 6, = 0.5.

where a 17;;) is the inverse of the regularized incomplete beta function. Figure 6 illustrates the effect of test set sample

size on top 100p™ percentile of accuracy achieved by a “null” or “trivial” classifier whose true underlying accuracy is
0, =0.5.

Let O(Nr) be the expected accuracy of a classifier applied to some data, evaluated out-of-sample with test-set
size Nz. Our classifier is better than the null if Prob(X > 6(N7)) is small, or equivalently if (Nz) > 1,(p, Nr)
consistently with respect to Nz for some small value of p. For example, if §( Ny = 10) > v,(p = 0.05, Ny = 10),
then our classifier performs better than 95% of expected null classifiers at a test-set size of 10. Similarly, if f( Ny =
10) > 1, (p = 0.01, Ny = 10), then our classifier has passed an even more stringent test, with better performance than
99% of expected null classifiers.

2.6.2 Sensitivity to Test-Set Size

We repeated our genomic classification experiment for the aggregate sample (denoted “ALL”), as well as the best and
poor clinical exemplar strata (those individuals with the top and bottom 25% of exemplar scores, respectively). However,
rather than using 10-fold stratified cross-validation, as in the main text, we conducted 100 randomized train-test splits at
each of the following test set proportions: pies: € {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8}. For example, at ps.s; = 0.1,
we hold out 10% of observations as a test set within the shuffle-split regime.

The classification performance attained at each of the 100 train-test splits conducted at each test-set size N (within
each of the ALL, best clinical exemplars, and poor clinical exemplars) can be compared to the corresponding value of
Yo (p, N7 ). Figure 7a plots these comparisons across test-set sizes and strata for p € {0.05,0.025}. Figure 7b plots the
proportion of shuffle-split runs for which classification performance exceeds ¢,(p = 0.05, Nr) at each test-set size
(expressed as a proportion). One can appreciate that the mean classification accuracy for the poor exemplar stratum
never exceeded ¢, (p = 0.05, N7). Genomic classification accuracy within the best clinical exemplars was consistently
better than that expected from a null model, with the mean classification accuracy exceeding 1,(p = 0.05, N7) at
all test-set sizes. Mean classification accuracy within the “ALL” stratum also exceeded v, (p = 0.05, Nr) at test-set
proportions piese > 0.1.

Figure 8 shows the effects of increasing test-set size on classification performance statistics. The most important
finding is that classification performance within the best clinical exemplar stratum was superior to classification within
either the whole genomic sample or the poor clinical exemplars. This verifies the central claim of our paper. The area
under the receiver operating characteristic curve (AUC) remains on the order of > 0.8 until the test set is increased to
> 50% of the total sample size of the best clinical exemplar stratum.
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Supplementary Figure 7: Results of experiment testing the effect of test-set size on genomic classification performance
using 100-fold shuffle split cross-validation. Panel A plots the performance of genomic classification runs for the
best and poor clinical exemplar strata (blue and red points, respectively) and the full sample (ALL; green points).
Within each of these strata, we performed 100-fold shuffle split cross validation with test set proportions pies: €
{0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8}. The out-of-sample classification accuracy obtained at each run is plotted as a
transparent point, coloured by the respective sample stratum. The absolute sample size (on a log scale) is plotted
along the x-axis. The solid black line represents the 95" percentile of accuracy (1, (p = 0.05, Nr)) that would be
expected from a null classifier (i.e. one with accuracy 6, = 0.5). The dotted black line is the 99" percentile of
accuracy (¢, (p = 0.01, Np)) that would be expected from a null classifier. The solid blue, red, and green lines (with
corresponding markers) represent the median classification accuracy for respective strata at each test set size. Panel B
plots the proportion of classification runs where accuracy exceeded ¢, (p = 0.05, Nt ) for each stratum (best and poor
clinical exemplars, and ALL), at each value of p;c;.
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Supplementary Figure 8: Effects of test-set size (expressed as a proportion of total stratum sample size, piest €
{0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8}) on our two primary classification performance statistics (area under the receiver
operating characteristic curve [AUC], and Matthews correlation coefficient [MCC]). We have additionally included the
Brier score. Points are means and error bars are 95% confidence intervals computed across 100 iterations of shuffle-split
cross-validation.
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2.7 Results of Gene Enrichment Analysis

Results of the pathway analysis are shown in Table 4. Genes that were enriched among the glutamatergic synapse
cellular component are shown in Table 5. Genes that were enriched among the glutamatergic signalling biological
process are shown in Table 6.
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Supplementary Table 5: Genes enriched in the best exemplars group related to glutamatergic synapses (gene ontology
“cellular component” category).

Gene Gene Symbol Protein Class

ABR Active breakpoint cluster region- | guanyl-nucleotide exchange factor(PC00113)
related protein

ACAN Aggrecan core protein extracellular matrix glycoprotein(PC00100)

ACTNI1, ACTN2 | Alpha-actinin-1 & 2

ADAM?22, Disintegrin and metalloproteinase | metalloprotease(PC00153)

ADAM23 domain-containing protein 22 & 23

ADCY1, ADCYS8 | Adenylate cyclase type 1 & 8

ADGRL3 Adhesion G protein-coupled recep- | G-protein coupled receptor(PC00021), antibacterial
tor L3 response protein(PC00051), protease(PC00190)

ADORA2B Adenosine receptor A2b G-protein coupled receptor(PC00021)

ADRAITA Alpha-1A adrenergic receptor G-protein coupled receptor(PC00021)

APBAI Amyloid-beta A4 precursor protein- | membrane trafficking regulatory protein(PC00151)
binding family A member 1

ARHGAP22, Rho GTPase-activating protein 22

ARHGAP39,

ARHGAP44

ATP2B2, Plasma membrane calcium- | cation transporter(PC00068), hydrolase(PC00121),

ATP2B4 transporting ATPase 2 & 4 ion channel(PC00133)

BAIAP2 Brain-specific angiogenesis | receptor(PC00197)
inhibitor 1-associated protein 2

BCR Breakpoint cluster region protein guanyl-nucleotide exchange factor(PC00113)

CACNAITA Voltage-dependent P/Q-type cal-
cium channel subunit alpha-1A

CACNG2, Voltage-dependent calcium channel | voltage-gated calcium channel(PC00240)

CACNGS, gamma-2 subunit

CACNG4

CADPS, Calcium-dependent secretion activa- | calcium-binding protein(PC00060)

CADPS2 tor 1 &2

CAMK4 Calcium/calmodulin-dependent pro- | non-motor microtubule binding protein(PC00166),
tein kinase type IV non-receptor serine/threonine protein ki-

nase(PC00167)

CDHS8, CDHI10, | Cadherin-8,10,11

CDH11

CHMP2B Charged multivesicular body pro-
tein 2b

CHRM?2, Muscarinic acetylcholine receptor | G-protein coupled receptor(PC00021)

CHRM3 M2 & M3

CLSTNI, Calsyntenin-1 & 2 calcium-binding protein(PC00060), cell adhesion

CLSTN2 molecule(PC00069)

CNRI1 Cannabinoid receptor 1 G-protein coupled receptor(PC00021)

CPLX2 Complexin-2

CTBP2 C-terminal-binding protein 2 transcription cofactor(PC00217)

CTTNBP2 Cortactin-binding protein 2

DGKB Diacylglycerol kinase beta kinase(PC00137)

DGKI Diacylglycerol kinase iota kinase(PC00137)

DLG2 Disks large homolog 2 transmembrane receptor regulatory/adaptor pro-

tein(PC00226)

Continued on next page...
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Supplementary Table 5: Continued

Gene Gene Symbol Protein Class

DLGAP4 Disks large-associated protein 4 transmembrane receptor regulatory/adaptor pro-
tein(PC00226)

DNM2, DNM3 Dynamin-2 & 3 hydrolase(PC00121), microtubule family cytoskeletal
protein(PC00157), small GTPase(PC00208)

DRD2, DRD3 D(2) & D(3) dopamine receptors G-protein coupled receptor(PC00021)

EFNB2 Ephrin-B2 membrane-bound signaling molecule(PC00152)

EPHA4, EPHA7

Ephrin type-A receptors 4 & 7

EPHBI1, EPHB2

Ephrin type-B receptors 1 & 2

ERBB4

Receptor tyrosine-protein kinase
erbB-4

ERC2 ERC protein 2 G-protein modulator(PC00022), membrane traffic pro-
tein(PC00150)
FARPI FERM, ARHGEF and pleckstrin
domain-containing protein 1
FYN Tyrosine-protein kinase Fyn
FZD3 Frizzled-9 G-protein coupled receptor(PC00021), protease in-
hibitor(PC00191), signaling molecule(PC00207)
GABRRI Gamma-aminobutyric acid receptor | GABA receptor(PC00023), acetylcholine recep-
subunit rho-1 tor(PC00037)
GPC6 Glypican-6
GPM6A Neuronal membrane glycoprotein | myelin protein(PC00161)
Mé6-a
GRIAL1 Glutamate receptor 1
GRID1, GRID2 Glutamate receptor ionotropic,
delta-1 & 2
GRIK2, GRIKS Glutamate receptor ionotropic,
kainate 2 & 5
GRIN2A, Glutamate receptor ionotropic,
GRIN3A NMDA 2A & 3A

GRIP1, GRIP2

Glutamate receptor-interacting pro-
tein 1 & 2

GRM1, GRM3 Metabotropic glutamate receptor 1 | G-protein coupled receptor(PC00021)
&3
GSGIL Germ cell-specific gene 1-like pro- | cytoskeletal protein(PC00085)
tein
GSK3B Glycogen synthase kinase-3 beta non-receptor serine/threonine protein ki-
nase(PC00167)
HIP1 Huntingtin-interacting protein 1 non-motor actin binding protein(PC00165)
HOMERI, Homer protein homolog 1 & 2
HOMER?2
HTR2A 5-hydroxytryptamine receptor 2A G-protein coupled receptor(PC00021)
ILIRAP Interleukin-1 receptor accessory | type I cytokine receptor(PC00231)

protein

ITGBI1, ITGB3

Integrin beta-1 & 3

cell adhesion molecule(PC00069), receptor(PC00197)

ITSN1

Intersectin-1

G-protein modulator(PC00022);calcium-binding pro-
tein(PC00060);membrane traffic protein(PC00150)

KCND2

Potassium voltage-gated channel
subfamily D member 2

Continued on next page...
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Supplementary Table 5: Continued

Gene Gene Symbol Protein Class
LGI1 Leucine-rich  glioma-inactivated
protein 1
LRFN5 Leucine-rich repeat and fibronectin
type-III domain-containing protein
5
LRRC4C Leucine-rich repeat-containing pro-
tein 4C
LRRK2 Leucine-rich repeat
serine/threonine-protein kinase 2
LRRN2 Leucine-rich repeat transmembrane
neuronal protein 2
LRRTM4 Leucine-rich repeat transmembrane | extracellular matrix protein(PC00102), recep-
neuronal protein 4 tor(PC00197)
LYN Tyrosine-protein kinase Lyn
MAPKI10, Mitogen-activated protein kinase 10 | non-receptor serine/threonine protein ki-
MAPK14 & 14 nase(PC00167)
MTOR Serine/threonine-protein  kinase | non-receptor serine/threonine protein
mTOR kinase(PC00167);nucleic acid bind-
ing(PC00171);nucleotide kinase(PC00172)
NAPB Beta-soluble NSF attachment pro- | membrane traffic protein(PC00150)
tein
NDRGI1 Protein NDRG1 serine protease(PC00203)
NETOl1 Neuropilin and tolloid-like protein
1
NLGNI1 Neuroligin-1
NOSIAP Carboxyl-terminal PDZ ligand of | signaling molecule(PC00207)
neuronal nitric oxide synthase pro-
tein
NRCAM Neuronal cell adhesion molecule
NRG1, NRG3 Pro-neuregulin-1 & 3, membrane- | growth factor(PC00112)
bound isoform
NRP1, NRP2 Neuropilin-1 & 2
NRXN1 Neurexin-1

NTNGI1, NTNG2

Netrin-G1 & G2

extracellular matrix linker protein(PC00101), protease
inhibitor(PC00191), receptor(PC00197)

NTRK3 NT-3 growth factor receptor
OLFM2 Noelin-2 receptor(PC00197);structural protein(PC00211)
P2RY1 P2Y purinoceptor 1
PAK2 Serine/threonine-protein  kinase
PAK 2
PLCB1, PLCB4 1-phosphatidylinositol 4,5- | calcium-binding  protein(PC00060), guanyl-
bisphosphate  phosphodiesterase | nucleotide exchange factor(PC00113), phos-
beta-1 & 4 pholipase(PC00186), signaling molecule(PC00207)
PLEKHAS Pleckstrin  homology  domain-
containing family A member
5
PLPPR4 Phospholipid phosphatase-related | phosphatase(PC00181);pyrophosphatase(PC00196)
protein type 4
PPFIA2 Liprin-alpha-2 & 3

Continued on next page...
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Supplementary Table 5: Continued

Gene Gene Symbol Protein Class
PPFIA3
PPMI1H Protein phosphatase 1H kinase  inhibitor(PC00139), protein  phos-
phatase(PC00195)
PPP1ROA Neurabin-1
PPP3CA Serine/threonine-protein phos-
phatase 2B catalytic subunit alpha
isoform
PRKARIA cAMP-dependent protein kinase
type I-alpha regulatory subunit
PSD2 PH and SEC7 domain-containing
protein 2
PTK2B Protein-tyrosine kinase 2-beta
PTPRD Receptor-type tyrosine-protein | protein phosphatase(PC00195);receptor(PC00197)

phosphatase delta

PTPRO, PTPRS,
PTPRT

Receptor-type tyrosine-protein
phosphatase O, S, & T

protein phosphatase(PC00195)

RACI1 Ras-related C3 botulinum toxin sub- | small GTPase(PC00208)
strate 1
RAPIA Ras-related protein Rap-1A small GTPase(PC00208)
RGS7BP Regulator of G-protein signaling 7-
binding protein
RNF216 E3 ubiquitin-protein ligase RNF216
SCN2A Sodium channel protein types 2 & | voltage-gated calcium channel(PC00240)
10 10 subunit alpha
SCN10A voltage-gated sodium channel(PC00243)
SH3GL1, Endophilin-A2,A1, & A3
SHGL2, SHGL3
SHANK?2 SH3 and multiple ankyrin repeat do-
mains protein 2
SHISAG6, Protein shisa-6 & 9
SHISA9
SLC1A2, Excitatory amino acid transporter 2 | cation transporter(PC00068)
SLC1A6
SLC6A17 Sodium-dependent neutral amino | cation transporter(PC00068)
acid transporter SLC6A17
SNAP25 Synaptosomal-associated protein 25 | SNARE protein(PC00034)
SORCS3 VPS 10 domain-containing receptor | receptor(PC00197), transporter(PC00227)
SorCS3
SPARC, SPARC & SPARC-like protein 1 cell adhesion molecule(PC00069), extracellular ma-
SPARCLI1 trix glycoprotein(PC00100), growth factor(PC00112)
SPTBNI1 Spectrin  beta  chain, non-
erythrocytic 1
SRC Proto-oncogene tyrosine-protein ki-
nase Src
STX3 Syntaxin-3 SNARE protein(PC00034)
SV2A Synaptic vesicle glycoprotein 2A
SYN3 Synapsin-3 membrane trafficking regulatory

protein(PC00151);non-motor actin binding pro-
tein(PC00165)

Continued on next page...
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Supplementary Table 5: Continued

Gene Gene Symbol Protein Class
SYNPO Synaptopodin non-motor actin binding protein(PC00165)
SYT1, SYT6 Synaptotagmin-1 & 6 membrane trafficking regulatory protein(PC00151)
TANC2 Protein TANC2
TIAM1 T-lymphoma invasion and
metastasis-inducing protein
1
TNIK TRAF2 and NCK-interacting pro-
tein kinase
TNR Tenascin-R signaling molecule(PC00207)
UNCI3A Protein unc-13 homolog A
WASF3 Wiskott-Aldrich syndrome protein | non-motor actin binding protein(PC00165)
family member 3
WNT7A Protein Wnt-7a signaling molecule(PC00207)
YWHAZ 14-3-3 protein zeta/delta chaperone(PC00072)
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Supplementary Table 6: Genes enriched among the best exemplars in the gene ontology “biological process” category
of the glutamate receptor signaling pathway.

Gene Gene Symbol Protein Class
APP Amyloid-beta A4 protein protease inhibitor(PC00191)
GNAQ Guanine nucleotide-binding protein | heterotrimeric G-protein(PC00117)
G(q) subunit alpha
GRIA1, GRIA4 Glutamate receptor 1 & 4
GRID1, GRID2 Glutamate receptor ionotropic,
delta-1, 2
GRIK1, GRIK2, | Glutamate receptor ionotropic,
GRIK4, GRIKS kainate 1,2,4,5
GRIN2A, Glutamate receptor ionotropic,
GRIN2B, NMDA 2A, 2B, 2D, 3A
GRIN2D,
GRIN3A
GRMI1, GRM3, | Metabotropic glutamate receptor | G-protein coupled receptor(PC00021)
GRM4, GRMS, | 1,3,4,5,6,7.8
GRM6, GRM7,
GRMS
HOMERI, Homer protein homolog 1 & 2
HOMER?2
KCNBI1 Potassium voltage-gated channel
subfamily B member 1
PLCBI1 1-phosphatidylinositol 4,5- | calcium-binding protein(PC00060), guanyl-
bisphosphate  phosphodiesterase | nucleotide exchange factor(PC00113), phos-
beta-1 pholipase(PC00186), signaling molecule(PC00207)
PTK2B Protein-tyrosine kinase 2-beta
SSR1 Somatostatin receptor type 1 G-protein coupled receptor(PC00021)
TIAM1 T-lymphoma invasion and
metastasis-inducing protein
1
TRPM1, TRPM3 | Transient receptor potential cation | ion channel(PC00133), receptor(PC00197)
channel subfamily M member 1 &
3

3 Supplementary Discussion

3.1 Further Rationale for SNP Set Used in Classification Analyses

Filtering-based feature selection approaches in our present study would be (A) too computationally expensive across
these millions of variants and (B) require much larger sample sizes since they must be repeated within each training
partition. We also had no dominant a priori biological rationale for limiting the data to a restricted subset, since, as
our results later confirmed, these biological systems may differ between exemplar strata. Ultimately, we chose the set
of completely genotyped SNPs that overlapped across ConLiGen sites in order to facilitate the potential conceptual
generalizability of our pathway analysis results, in particular. That is, since the pathways detected were based on
variants that are broadly genotyped, these results could potentially be extended to other ConLiGen sites, should the
corresponding clinical variables become available.
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